Render Target: STATIC
Render Timestamp: 2024-07-26T09:43:25.484Z
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

eRF3 Antibody #14980

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 80
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    eRF3 Antibody recognizes endogenous levels of total eRF3 protein. This antibody recognizes eRF3a and eRF3b proteins.


    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro180 of human eRF3a protein, isoform 3. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Eukaryotic release factor 3 (eRF3, GSPT) is an evolutionarily conserved class II release factor and member of the GTPase superfamily that cooperates with eRF1 in polypeptide translation termination (1). Paralogous genes encode a pair of eRF3 proteins (eRF3a/GSPT1, eRF3b/GSPT2) that share a conserved carboxy-terminal GTPase/eRF1-binding domain and a non-conserved amino-terminal PABP1 binding site (2). The eRF3 carboxy-terminal region is involved in translation termination through binding and activation of the eRF1 release factor (1). The amino-terminal region of eRF3 is not required for eRF1 binding and activation, but is implicated in control of mRNA stability (3,4). Expression of eRF3 proteins vary, with eRF3a ubiquitously expressed and proliferation-dependent, while eRF3b expression is more restricted to brain tissue (2,5,6). Research studies demonstrate that eRF3 undergoes caspase-mediated cleavage and degradation related to reduced protein synthesis during DNA damage-induced apoptosis (7). Additional studies indicate that polyglycine expansion of the eRF3a amino terminus is associated with an increased susceptibility to breast and gastric cancer (8,9). It is likely that the polyglycine expansions of amino-terminal eRF3a may affect the ability of eRF3a to undergo caspase-mediated cleavage (9).

    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.