Render Target: STATIC
Render Timestamp:
4/7/2025, 6:23:34 PM EDT
4/7/2025, 10:23:34 PM UTC
Commit: c91f970ca8df4f527662a05c7bd6e4d03c6fa173
XML generation date: 2025-03-07 13:06:47.636
Product last modified at: 2025-04-04T20:00:09.943Z
Cell Signaling Technology Logo

Basket Updated

0

Items added

1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb #13038

Filter:
  • WB
  • IP
  • IF
  • F
Western Blotting Image 1: Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb
Western blot analysis of extracts from NIH/3T3 cells, untreated (-) or treated with Human Platelet-Derived Growth Factor AA (hPDGF-AA) #8913 (100 ng/ml, 5 min; +), and untreated (-) LNCaP and PC-3 cells, using Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb (upper) or Akt (pan) (C67E7) Rabbit mAb #4691 (lower).

To Purchase # 13038

Cat. # Size Qty. Price
13038T 20 µl
$174
13038S 100 µl
$431

Supporting Data

REACTIVITY H M R Mk
SENSITIVITY Endogenous
MW (kDa) 60
Source/Isotype Rabbit IgG
Application Key:
  • WB-Western Blotting 
  • IP-Immunoprecipitation 
  • IF-Immunofluorescence 
  • F-Flow Cytometry 
Species Cross-Reactivity Key:
  • H-Human 
  • M-Mouse 
  • R-Rat 
  • Mk-Monkey 
  • Related Products
  • Conjugates

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000
Immunoprecipitation 1:50
Immunofluorescence (Immunocytochemistry) 1:800 - 1:1600
Flow Cytometry (Fixed/Permeabilized) 1:1600 - 1:6400

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

For a carrier free (BSA and azide free) version of this product see product #80722.

Protocol

Specificity / Sensitivity

Phospho-Akt (Thr308) (D25E6) XP® Rabbit mAb recognizes endogenous levels of Akt1 protein only when phosphorylated at Thr308. This antibody also recognizes endogenous levels of Akt2 protein when phosphorylated at Thr309 or Akt3 protein when phosphorylated at Thr305.

Species Reactivity:

Human, Mouse, Rat, Monkey

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Thr308 of human Akt1 protein.

Background

Akt, also referred to as PKB or Rac, plays a critical role in controlling cell survival and apoptosis (1-3). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (2,3). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (4) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (5,6). Akt promotes cell survival by inhibiting apoptosis through phosphorylation and inactivation of several targets, including Bad (7), forkhead transcription factors (8), c-Raf (9), and caspase-9. PTEN phosphatase is a major negative regulator of the PI3K/Akt signaling pathway (10). LY294002 is a specific PI3 kinase inhibitor (11). Another essential Akt function is the regulation of glycogen synthesis through phosphorylation and inactivation of GSK-3α and β (12,13). Akt may also play a role in insulin stimulation of glucose transport (12). In addition to its role in survival and glycogen synthesis, Akt is involved in cell cycle regulation by preventing GSK-3β-mediated phosphorylation and degradation of cyclin D1 (14) and by negatively regulating the cyclin-dependent kinase inhibitors p27 Kip1 (15) and p21 Waf1/Cip1 (16). Akt also plays a critical role in cell growth by directly phosphorylating mTOR in a rapamycin-sensitive complex containing raptor (17). More importantly, Akt phosphorylates and inactivates tuberin (TSC2), an inhibitor of mTOR within the mTOR-raptor complex (18,19).
  1. Franke, T.F. et al. (1997) Cell 88, 435-7.
  2. Burgering, B.M. and Coffer, P.J. (1995) Nature 376, 599-602.
  3. Franke, T.F. et al. (1995) Cell 81, 727-36.
  4. Alessi, D.R. et al. (1996) EMBO J 15, 6541-51.
  5. Sarbassov, D.D. et al. (2005) Science 307, 1098-101.
  6. Jacinto, E. et al. (2006) Cell 127, 125-37.
  7. Cardone, M.H. et al. (1998) Science 282, 1318-21.
  8. Brunet, A. et al. (1999) Cell 96, 857-68.
  9. Zimmermann, S. and Moelling, K. (1999) Science 286, 1741-4.
  10. Cantley, L.C. and Neel, B.G. (1999) Proc Natl Acad Sci USA 96, 4240-5.
  11. Vlahos, C.J. et al. (1994) J Biol Chem 269, 5241-8.
  12. Hajduch, E. et al. (2001) FEBS Lett 492, 199-203.
  13. Cross, D.A. et al. (1995) Nature 378, 785-9.
  14. Diehl, J.A. et al. (1998) Genes Dev 12, 3499-511.
  15. Gesbert, F. et al. (2000) J Biol Chem 275, 39223-30.
  16. Zhou, B.P. et al. (2001) Nat Cell Biol 3, 245-52.
  17. Navé, B.T. et al. (1999) Biochem J 344 Pt 2, 427-31.
  18. Inoki, K. et al. (2002) Nat Cell Biol 4, 648-57.
  19. Manning, B.D. et al. (2002) Mol Cell 10, 151-62.

Pathways

Explore pathways related to this product.


For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
XP is a registered trademark of Cell Signaling Technology, Inc.
U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.