Render Target: STATIC
Render Timestamp: 2025-01-21T11:10:28.314Z
Commit: da7e4f2f0d1aed1f1f8e20e4e2ecab8f33cbd595
XML generation date: 2024-09-30 01:54:12.112
Product last modified at: 2025-01-06T18:45:09.905Z
Cell Signaling Technology Logo

Basket Updated

0

Items added

1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

DNA Ligase IV (D5N5N) Rabbit mAb #14649

Filter:
  • WB
Western Blotting Image 1: DNA Ligase IV (D5N5N) Rabbit mAb
Western blot analysis of extracts from various cell lines using DNA Ligase IV (D5N5N) Rabbit mAb.

To Purchase # 14649

Cat. # Size Qty. Price Ships
14649T 20 µl
$153 Jan 22
14649S 100 µl
$339 Jan 22

Supporting Data

REACTIVITY H
SENSITIVITY Endogenous
MW (kDa) 100
Source/Isotype Rabbit IgG
Application Key:
  • WB-Western Blotting 
Species Cross-Reactivity Key:
  • H-Human 
  • Related Products

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

DNA Ligase IV (D5N5N) Rabbit mAb recognizes endogenous levels of total DNA ligase IV protein.

Species Reactivity:

Human

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Leu771 of human DNA ligase IV protein.

Background

DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Cells detect and repair DSBs through two distinct but partly overlapping signaling pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR). DNA repair through the HR pathway is restricted to S and G2 phases of the cell cycle, while NHEJ can occur during any cell cycle phase. Defects in both pathways have been associated with human disease, including cancer (1).

DNA repair through the NHEJ pathway involves a core group of proteins that includes the Ku heterodimer, DNA-PKcs, DNA ligase IV, XRCC4, and XLF. XLF interacts with XRCC4 and promotes the ligation of DNA strands by DNA ligase IV and the ligase cofactor XRCC4. The ATP-dependent ligation of free DNA ends is the final step in the NHEJ repair pathway (2). Research studies suggest that XLF and XRCC4 proteins form complexes that bridge DNA breaks earlier in the NHEJ pathway (3). Additional studies indicate that localization of XRCC4 to the nucleus and levels of XRCC4 protein are both regulated by DNA ligase IV (4). Mutations in the corresponding LIG4 gene are associated with LIG4 syndrome, a disorder characterized by immunodeficiency and developmental growth delay. Cells isolated from patients diagnosed with LIG4 syndrome display typical cell cycle checkpoint activity, but aberrant rejoining of DNA double strand breaks (5,6).
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.