Render Target: STATIC
Render Timestamp: 2024-10-25T10:34:27.114Z
Commit: 56767fe525c928647c8401233a175d0d607d385d
XML generation date: 2024-04-05 20:14:58.302
Product last modified at: 2024-08-20T12:15:11.174Z
1% for the planet logo
PDP - Template Name: Antibody Sampler Kit
PDP - Template ID: *******4a3ef3a

ER Protein Folding Antibody Sampler Kit #4759

    Product Information

    Product Description

    The ER Protein Folding Antibody Sampler Kit contains reagents to investigate the initiation of translation within the cell. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.

    Specificity / Sensitivity

    Each antibody in the ER Protein Folding Antibody Sampler Kit detects endogenous levels of its target protein.

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic phosphopeptide corresponding to residues surrounding Gly584 of human BiP, the sequence of human ERp44, the residues surrounding Met279 of human ERp72 protein and the sequence of human PD1. Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the sequences around Gly117 of human ERp57, Met622 of human Grp94 and Leu218 of human Ero1-Lα. Polyclonal antibodies are purified by protein A and peptide affinity chromatography.

    Background

    After their synthesis, secretory proteins translocate into the endoplasmic reticulum (ER) where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Disulfide isomerase (PDI) catalyzes the formation and isomerization of these disulfide bonds (2). Studies on mechanisms of oxidative folding suggest that molecular oxygen oxidizes the ER-protein Ero1, which in turn oxidizes PDI through disulfide exchange (3). This event is then followed by PDI-catalyzed disulfide bond formation on folding proteins (3). Other ER resident proteins that possess the thioredoxin homology domains, including endoplasmic reticulum stress proteins 72, 57 and 44 (ERp72, ERp57 and ERp44), constitute the PDI family (4,5,6). The ER also contains a pool of molecular chaperones, including Grp94, to help proteins fold properly. Grp94 is a glucose-regulated protein (7) with sequence homology to Hsp90 (8). BiP is another chaperone whose synthesis is increased when protein folding is disturbed. BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (9).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    U.S. Patent No. 7,429,487, foreign equivalents, and child patents deriving therefrom.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.