Render Target: STATIC
Render Timestamp: 2025-01-21T04:24:26.025Z
Commit: da7e4f2f0d1aed1f1f8e20e4e2ecab8f33cbd595
XML generation date: 2024-08-01 15:24:33.688
Product last modified at: 2025-01-15T10:45:08.018Z
Cell Signaling Technology Logo

Basket Updated

0

Items added

1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

MDA-5 (D74E4) Rabbit mAb #5321

Filter:
  • WB
  • IP
Western Blotting Image 1: MDA-5 (D74E4) Rabbit mAb
Western blot analysis of extracts from 293T cells, mock transfected (-) or transfected with human MDA-5 (+), using MDA-5 (D74E4) Rabbit mAb.

To Purchase # 5321

Cat. # Size Qty. Price Ships
5321T 20 µl
$145
5321S 100 µl
$339

Supporting Data

REACTIVITY H M
SENSITIVITY Endogenous
MW (kDa) 135
Source/Isotype Rabbit IgG
Application Key:
  • WB-Western Blotting 
  • IP-Immunoprecipitation 
Species Cross-Reactivity Key:
  • H-Human 
  • M-Mouse 

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000
Immunoprecipitation 1:100

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

MDA-5 (D74E4) Rabbit mAb detects endogenous levels of total MDA-5 protein.

Species Reactivity:

Human, Mouse

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Arg470 of human MDA-5.

Background

Antiviral innate immunity depends on the combination of parallel pathways triggered by virus detecting proteins in the Toll-like receptor (TLR) family and RNA helicases, such as Rig-I (retinoic acid-inducible gene I) and MDA-5 (melanoma differentiation-associated antigen 5), which promote the transcription of type I interferons (IFN) and antiviral enzymes (1-3). TLRs and helicase proteins contain sites that recognize the molecular patterns of different virus types, including DNA, single-stranded RNA (ssRNA), double-stranded RNA (dsRNA), and glycoproteins. These antiviral proteins are found in different cell compartments; TLRs (i.e. TLR3, TLR7, TLR8, and TLR9) are expressed on endosomal membranes and helicases are localized to the cytoplasm. Rig-I expression is induced by retinoic acid, LPS, IFN, and viral infection (4,5). Both Rig-I and MDA-5 share a DExD/H-box helicase domain that detects viral dsRNA and two amino-terminal caspase recruitment domains (CARD) that are required for triggering downstream signaling (4-7). Rig-I binds both dsRNA and viral ssRNA that contains a 5'-triphosphate end not seen in host RNA (8,9). Though structurally related, Rig-I and MDA-5 detect a distinct set of viruses (10,11). The CARD domain of the helicases, which is sufficient to generate signaling and IFN production, is recruited to the CARD domain of the MAVS/VISA/Cardif/IPS-1 mitochondrial protein, which triggers activation of NF-κB, TBK1/IKKε, and IRF-3/IRF-7 (12-15).
MDA-5 (16,17), also named Ifih1 (interferon induced with helicase C domain 1), RH116 (RNA helicase-DEAD box protein 116) (18), or Helicard (19) is found to be induced by interferon. During apoptosis, MDA-5 is cleaved by caspases, separating the helicase and CARD domains (19). MDA-5 is uniquely activated by picornavirus (20) and measles virus (21).
  1. Yoneyama, M. and Fujita, T. (2007) J Biol Chem 282, 15315-8.
  2. Meylan, E. and Tschopp, J. (2006) Mol Cell 22, 561-9.
  3. Thompson, A.J. and Locarnini, S.A. (2007) Immunol Cell Biol 85, 435-45.
  4. Imaizumi, T. et al. (2002) Biochem Biophys Res Commun 292, 274-9.
  5. Zhang, X. et al. (2000) Microb Pathog 28, 267-78.
  6. Yoneyama, M. et al. (2005) J Immunol 175, 2851-8.
  7. Yoneyama, M. et al. (2004) Nat Immunol 5, 730-7.
  8. Hornung, V. et al. (2006) Science 314, 994-7.
  9. Pichlmair, A. et al. (2006) Science 314, 997-1001.
  10. Kato, H. et al. (2006) Nature 441, 101-5.
  11. Childs, K. et al. (2007) Virology 359, 190-200.
  12. Meylan, E. et al. (2005) Nature 437, 1167-72.
  13. Xu, L.G. et al. (2005) Mol Cell 19, 727-40.
  14. Kawai, T. et al. (2005) Nat Immunol 6, 981-8.
  15. Seth, R.B. et al. (2005) Cell 122, 669-82.
  16. Kang, D.C. et al. (2002) Proc Natl Acad Sci U S A 99, 637-42.
  17. Kang, D.C. et al. (2004) Oncogene 23, 1789-800.
  18. Cocude, C. et al. (2003) J Gen Virol 84, 3215-25.
  19. Kovacsovics, M. et al. (2002) Curr Biol 12, 838-43.
  20. Kato, H. et al. (2006) Nature 441, 101-5.
  21. Berghäll, H. et al. (2006) Microbes Infect 8, 2138-44.
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.