Render Target: STATIC
Render Timestamp: 2024-12-04T12:21:49.696Z
Commit: cd2fae6ca3f811b1ddb1df24ac291ed56d5d501b
XML generation date: 2024-10-30 20:01:10.064
Product last modified at: 2024-11-15T15:00:11.723Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

YTHDF2 (E2I2H) Rabbit mAb #71283

Filter:
  • WB
  • IP
  • IF
  • eCLIP

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 65
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    • eCLIP-eCLIP 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:100
    Immunofluorescence (Frozen) 1:50 - 1:200
    Immunofluorescence (Immunocytochemistry) 1:800 - 1:3200
    eCLIP 1:200
    For more information about the RBP-eCLIP service please visit Eclipsebio.

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    YTHDF2 (E2I2H) Rabbit mAb recognizes endogenous levels of total YTHDF2 protein. Experiments utilizing overexpression constructs indicated that this antibody does not cross-react with other YTHDF proteins.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly167 of human YTHDF2 protein.

    Background

    N6-methyladenosine (m6A) is an abundant RNA modification that plays an important role in mRNA splicing, processing, and stability. The m6A modification is specifically recognized by members of the YT521B homology (YTH) domain-containing family (YTHDF), consisting of YTHDF1, YTHDF2, and YTHDF3. All three members of the YTHDF family are primarily cytosolic proteins that share similar sequence and domain structure, including a conserved C-terminal YTH domain that specifically interacts with m6A (1). Despite these similarities, recent studies suggest that YTHDF proteins are involved in distinct regulatory functions with minimal overlap. Specifically, YTHDF1 binding has been reported to promote enhanced mRNA translation, but has no measurable effect on mRNA stability (2). Conversely, YTHDF2 binding appears to promote mRNA degradation, but has minimal effect on translation efficiency (3). The function of YTHDF3 is less clear, but it has been proposed to function as an auxiliary protein for both YTHDF1 and YTHDF2, helping to promote either increased mRNA translation or decay, respectively (4). Additional studies offer a different viewpoint, suggesting that all three YTHDF proteins initiate mRNA degradation (5), or mediate increased mRNA stability and protein expression (6), promoting the idea that these proteins may carry out similar rather than distinct functions.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    Alexa Fluor is a registered trademark of Life Technologies Corporation.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.