Render Target: STATIC
Render Timestamp: 2025-01-23T09:13:21.120Z
Commit: da7e4f2f0d1aed1f1f8e20e4e2ecab8f33cbd595
XML generation date: 2024-09-04 22:38:13.654
Product last modified at: 2025-01-01T09:01:04.604Z
1% for the planet logo
PDP - Template Name: PTMScan (with Pricing)
PDP - Template ID: *******57cbce3

PTMScan® Malonyl-Lysine [Mal-K] Kit #93872

PTMScan® Malonyl-Lysine [Mal-K] Kit: Image 1
The Motif Logo was generated from a PTMScan® LC-MS/MS experiment using 779 nonredundant tryptic mouse liver peptides immunoprecipitated with PTMScan® Malonyl-Lysine [Mal-K] Immunoaffinity Beads. The logo represents the relative frequency of amino acids in each position surrounding the central malonylated lysine residue.

To Purchase # 93872

Cat. #

Size

93872S
1 Kit

Additional Information

This product is intended for peptide enrichment and mass spectrometry analysis. To learn more about our Proteomics Kits and Services please answer a few questions for our Proteomics group.

Contact the CST Proteomics Group

  • Product Includes
  • Related Products
Product IncludesVolume (with Count)
PTMScan® IAP Buffer (10X) #999310 x 600 µl
PTMScan® Malonyl-Lysine [Mal-K] Immunoaffinity Beads #7720710 x 80 µl

Product Information

Product Usage Information

Cells are lysed in a urea-containing buffer, cellular proteins are digested by proteases, and the resulting peptides are purified by reversed-phase solid-phase extraction. Peptides are then subjected to immunoaffinity purification using a PTMScan® Motif Antibody conjugated to protein A agarose beads. Unbound peptides are removed through washing, and the captured PTM-containing peptides are eluted with dilute acid. Reversed-phase purification is performed on microtips to desalt and separate peptides from antibody prior to concentrating the enriched peptides for LC-MS/MS analysis. CST recommends the use of PTMScan® IAP Buffer #9993 included in the kit.

Storage

Antibody beads supplied in IAP buffer containing 50% glycerol. Store at -20°C. Do not aliquot the antibody.

Protocol

Product Description

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur. For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/services/index.html.

Background

Lysine is subject to a wide array of regulatory post-translational modifications due to its positively charged ε-amino group side chain. The most prevalent of these are ubiquitination and acetylation, which are highly conserved among prokaryotes and eukaryotes (1,2). Acyl group transfer from the metabolic intermediates acetyl-, succinyl-, malonyl-, glutaryl-, butyryl-, propionyl-, and crotonyl-CoA all neutralize lysine’s positive charge and confer structural alterations affecting substrate protein function. Lysine acetylation is catalyzed by histone acetyltransferases, HATs, using acetyl-CoA as a cofactor (3,4). Deacylation is mediated by histone deacetylases, HDACs 1-11, and NAD-dependent Sirtuins 1-7. Some sirtuins have little to no deacetylase activity, suggesting that they are better suited for other acyl lysine substrates (5).

Sirt 5 is a predominantly mitochondrial desuccinylase and demalonylase (5,6). In the absence of a known malonyltransferase, nonenzymatic protein malonylation is likely driven by the concentration of Malonyl-CoA and intracellular pH and is subject to metabolic fluctuations (7). Malonylation is especially prevalent among mitochondrial metabolic proteins. In type II diabetes mouse models, notably elevated malonylation can be detected mainly, but not exclusively, on proteins of glucose and fatty acid metabolism (8). Yeast histone H3K56 malonylation suggests poor DNA binding efficiency and may lead to reduced cell viability (9).
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
AcetylScan is a registered trademark of Cell Signaling Technology, Inc.
MethylScan is a registered trademark of Cell Signaling Technology, Inc.
PhosphoScan is a registered trademark of Cell Signaling Technology, Inc.
UbiScan is a registered trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.