Render Target: STATIC
Render Timestamp: 2024-11-21T13:28:17.690Z
Commit: 5c4accf06eb7154018ba3f54329c7590f97f534a
XML generation date: 2024-09-20 06:14:08.940
Product last modified at: 2024-09-20T07:00:57.417Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

IDO (D5J4E) Rabbit mAb (PE Conjugate) #10312

Filter:
  • F

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa)
    Source/Isotype Rabbit IgG
    Application Key:
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Description

    This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated IDO (D5J4E™) Rabbit mAb #86630.

    Product Usage Information

    Application Dilution
    Flow Cytometry (Fixed/Permeabilized) 1:50

    Storage

    Supplied in PBS (pH 7.2), less than 0.1% sodium azide and 2 mg/ml BSA. Store at 4°C. Do not aliquot the antibodies. Protect from light. Do not freeze.

    Protocol

    Specificity / Sensitivity

    IDO (D5J4E™) Rabbit mAb recognizes endogenous levels of total IDO (IDO-1, INDO) protein. The antibody does not cross-react with IDO-2 (INDOL1). Some nonspecific staining of normal breast epithelium has been observed.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with recombinant human IDO protein.

    Background

    INDO/IDO1/indoleamine 2,3-dioxygenase (IDO) is an IFN-γ-inducible enzyme that catalyzes the rate-limiting step of tryptophan degradation (1). IDO is upregulated in many tumors and in dendritic cells in tumor-draining lymph nodes. Elevated tryptophan catabolism in these cells leads to tryptophan starvation of T cells, limiting T cell proliferation and activation (2). Therefore, IDO is considered an immunosuppresive molecule, and research studies have shown that upregulation of IDO is a mechanism of cancer immune evasion (3). The gastrointestinal stromal tumor drug, imatinib, was found to act, in part, by reducing IDO expression, resulting in increased CD8+ T cell activation and induction of apoptosis in regulatory T cells (4). In addition to its enzymatic activity, IDO was recently shown to have signaling capability through an immunoreceptor tyrosine-based inhibitory motif (ITIM) that is phosphorylated by Fyn in response to TGF-β. This leads to recruitment of SHP-1 and activation of the noncanonical NF-κB pathway (5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.