Render Target: STATIC
Render Timestamp: 2024-08-30T10:58:03.833Z
Commit: local
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

AKAP5 (D28G3) Rabbit mAb #5671

Filter:
  • WB

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 79
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    AKAP5 (D28G3) Rabbit mAb recognizes endogenous levels of total AKAP5 protein. This antibody does not cross-react with other AKAP family proteins.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Arg383 of human AKAP5 protein.

    Background

    AKAPs (A-kinase anchoring proteins), as their name implies, are a family of scaffolding proteins that bind regulatory subunits of Protein Kinase A (PKA) thus localizing PKA activity to distinct regions of the cell (1). Beyond a common amphipathic alpha helix that is responsible for recruiting the PKA regulatory subunit (RIα, RIIα, RIβ, or RIIβ), individual AKAPs contain additional domains responsible for the recruitment of additional signaling proteins (phosphodiesterases, phosphatases, cytoskeletal components, other kinases, etc.) or restricting AKAP to a specific subcellular location (1). AKAP5 (also known as P75, AKAP75, or AKAP79) is predominantly expressed in neuronal tissues and cells where it serves to localize type II PKA to post-synaptic densities (2-4). AKAP5 specifically binds to the regulatory subunit of PKAIIβ, anchoring the enzyme to the plasma membrane and sites of cytoskeletal/membrane junctions (4-5). The other binding domains of AKAP5 have been shown to interact with calmodulin, PP2B, and calcineurin suggesting that AKAP5 may act to coordinate the cAMP- and Ca2+-sensing pathways in various cell types (5-8).

    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.