Render Target: STATIC
Render Timestamp: 2024-12-26T11:15:33.444Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-05-10 06:26:41.414
Product last modified at: 2024-06-27T13:37:03.028Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Antibody Duet
PDP - Template ID: *******ad0fa02

PhosphoPlus® ATM (Ser1981) Antibody Duet #31068

    Product Information

    Kit Usage Information

    Protocols

    Product Description

    PhosphoPlus® Duets from Cell Signaling Technology (CST) provide a means to assess protein activation status. Each Duet contains an activation-state and total protein antibody to your target of interest. These antibodies have been selected from CST's product offering based upon superior performance in specified applications.

    Background

    ATM (ataxia telangiectasia mutated kinase) is a serine/threonine protein kinase best known for its role in DNA repair signaling in response to DNA double-strand breaks (DSBs). When DSBs occur, the MRE11:RAD50:NBS1 (MRN) sensor complex recruits ATM to sites of DNA damage. ATM then signals to numerous effector proteins, leading to cellular responses including regulation of DNA repair, cell cycle progression, apoptosis, senescence, gene transcription. Along with ATR, DNA-PKcs, SMG1 and mTOR, ATM is a member of the PI3K-like protein kinase (PIKK) family. PIKK family members typically function in response to various types of cellular stress. Substrates of ATM are numerous, and include CHK2, AKT, p53, BRCA1 and DNA-PK (reviewed in 1,3). Inactive ATM exists as a homodimer. In response to DSBs, ATM undergoes autophosphorylation in trans at Ser1981, which leads to dissociation of the complex to become an active monomer (2). Functional DNA repair pathways are important in cellular homeostasis, and defects in these pathways cause genomic instability, which can lead to tumorigenesis (3). Inactivation of ATM results in ataxia telangiectasia (AT), a neurodegenerative disease characterized by predisposition to cancer (4).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    PhosphoPlus is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.