Render Target: STATIC
Render Timestamp: 2024-12-26T11:53:17.166Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:56:48.077
Product last modified at: 2024-12-17T19:02:56.059Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

BATF (D7C5) Rabbit mAb #8638

Filter:
  • WB
  • IP
  • F

    Supporting Data

    REACTIVITY H M
    SENSITIVITY Endogenous
    MW (kDa) 15
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • F-Flow Cytometry 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:100
    Flow Cytometry (Fixed/Permeabilized) 1:400 - 1:1600

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    For a carrier free (BSA and azide free) version of this product see product #27977.

    Protocol

    Specificity / Sensitivity

    BATF (D7C5) Rabbit mAb detects endogenous levels of total BATF protein.

    Species Reactivity:

    Human, Mouse

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the carboxy terminus of human BATF protein.

    Background

    Basic leucine zipper transcriptional factor ATF-like (BATF) is a basic leucine zipper (bZIP) transcription factor and is part of the AP-1/ATF family that forms inhibitory dimers with members of the Jun family (1-3). Expression of BATF is largely restricted with highest levels found in mature T cells, and it is induced in B cells following immune responses including viral infection (1,2). BATF expression is also induced by IL-6 via a Stat3-dependent mechanism (4). BATF plays an important role in the differentiation of immune cell lineages (5-7). Studies of BATF-deficient mice have demonstrated a critical role for BATF in the formation of IL-17-expressing Th17 cells, in part, by regulating the expression of IL-17 (5,6). BATF knockouts are resistant to experimental autoimmune encephalomyelitis (EEA), consistent with the role of Th17 cells in this model for autoimmunity (5). Additional studies have found that BATF is important in generating antibody class switching. BATF is required for the generation of follicular helper T cells (Tfh), by regulating BCL6 and c-Maf (6,7). In B cells, BATF controls the expression of activation-induced cytidine deaminase (AID) and regulates class-switched antibody responses (7). Taken together, these studies suggest that BATF is a key regulator of distinct populations of immune cells.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.