Render Target: STATIC
Render Timestamp: 2024-12-17T12:16:23.158Z
Commit: ff25cf0788e69a87df3da505ebb7b292b97eec1a
XML generation date: 2024-09-30 01:58:15.815
Product last modified at: 2024-12-10T12:30:14.278Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Calpain 2 Large Subunit (M-type) (E3M6E) Rabbit mAb #70655

Filter:
  • WB
  • IP
  • IF

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 80
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunofluorescence (Frozen) 1:50 - 1:100
    Immunofluorescence (Immunocytochemistry) 1:200 - 1:400

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Calpain 2 Large Subunit (M-type) (E3M6E) Rabbit mAb recognizes endogenous levels of total calpain 2 (large subunit) protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human calpain 2 (large subunit) protein.

    Background

    Calpain is a calcium-dependent thiol proteinase that is functionally active as a heterodimer composed of a small regulatory subunit and one of at least two large catalytic subunits (calpain 1 or calpain 2). In vitro, calpain 1 (mu-calpain) requires micromolar levels of calcium, while calpain 2 (M-calpain) requires millimolar levels of calcium for activation. The regulation of calpain in vivo is the subject of many current studies, which suggest that proteolytic activity is regulated post-transcriptionally by mechanisms such as calcium requirements, subcellular localization of the heterodimer, phosphorylation via the EGFR-Erk signaling cascade, endogenous inhibitors (calpastatin), and autoproteolytic cleavage (1). Calpastatin negatively regulates autoproteolytic cleavage of calpain 1 between Gly27 and Leu28 (2). Calpain influences cell migration by modifying rather than degrading its substrates responsible for cell adhesion and cytoskeletal arrangement. Control of calpain activity has caught the attention of drug development since limiting its activity could mute invasiveness of tumors or chronic inflammation (1).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.