Render Target: STATIC
Render Timestamp: 2025-01-22T01:57:50.814Z
Commit: da7e4f2f0d1aed1f1f8e20e4e2ecab8f33cbd595
XML generation date: 2024-09-30 01:53:19.783
Product last modified at: 2025-01-01T09:06:52.151Z
Cell Signaling Technology Logo

Basket Updated

0

Items added

1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

CIN85 (D1A4) Rabbit mAb #12304

Filter:
  • WB
  • IP
Western Blotting Image 1: CIN85 (D1A4) Rabbit mAb
Western blot analysis of extracts from various cell lines using CIN85 (D1A4) Rabbit mAb.

To Purchase # 12304

Cat. # Size Qty. Price Ships
12304T 20 µl
$153
12304S 100 µl
$339

Supporting Data

REACTIVITY H M Mk
SENSITIVITY Endogenous
MW (kDa) 78, 82
Source/Isotype Rabbit IgG
Application Key:
  • WB-Western Blotting 
  • IP-Immunoprecipitation 
Species Cross-Reactivity Key:
  • H-Human 
  • M-Mouse 
  • Mk-Monkey 
  • Related Products

Product Information

Product Usage Information

Application Dilution
Western Blotting 1:1000
Immunoprecipitation 1:200

Storage

Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

Protocol

Specificity / Sensitivity

CIN85 (D1A4) Rabbit mAb recognizes endogenous levels of total CIN85 protein. This antibody also detects CIN85 isoform b (CD2BP3) and CIN85 isoform c. This antibody does not cross-react with CMS/CD2AP.

Species Reactivity:

Human, Mouse, Monkey

The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

Species predicted to react based on 100% sequence homology:

Rat, Hamster, Bovine, Dog, Pig

Source / Purification

Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Lys485 of human CIN85 protein.

Background

CIN85 was independently identified as Cbl-interacting protein of 85 kDa (1), Ruk (regulator of ubiquitous kinase) (2), SETA (SH3 domain-containing gene expressed in tumorigenic astrocytes) (3), and SH3KBP1 (SH3 domain kinase binding protein 1) (4). The genes encoding these proteins were isolated from either human (CIN85), rat (Ruk and SETA), or mouse (SH3KBP1) sources and share between 92% and 97% sequence identity, suggesting that they represent homologues of one gene. Differential promoter usage and alternative splicing is thought to occur in a tissue specific and developmentally regulated manner to generate a complex expression pattern of various transcripts and encoded protein isoforms (5). The main isoform in humans, CIN85, contains three N-terminal SH3 domains, a proline-rich region harboring several P-X-X-P motifs that provide recognition sites for SH3 domain-containing proteins, a PEST sequence implicated in CIN85 degradation, and a C-terminal coiled-coil region for oligomerization (1,2,5,6). The other molecular variants of CIN85 are shorter, N-terminally truncated proteins lacking one, two, or all three of the SH3 domains (1,5,6-8). Proteomic screens suggest that CIN85 is phosphorylated at multiple sites and the role of phosphorylation of some of these sites in regulation of intra- and intermolecular interactions of CIN85 cannot be excluded. CIN85 belongs to the CD2AP/CMS family of adaptor proteins and has been shown to interact with signaling molecules such as c-Cbl, Cbl-b, BLNK, p85/PI3K, GRB2, p130 Cas, and endophilins to coordinate the activity of multiple signaling cascades. Indeed, a growing body of evidence suggests that CIN85 is required for the regulation of a variety of cellular processes including vesicle-mediated transport (9-12), signal transduction (13,14), and cytoskeleton remodelling (15).
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.