Render Target: STATIC
Render Timestamp: 2024-12-26T11:02:19.113Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:54:26.714
Product last modified at: 2024-12-17T18:49:39.587Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

HUS1 (D4J9H) Rabbit mAb #16416

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 30
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    HUS1 (D4J9H) Rabbit mAb recognizes endogenous levels of total HUS1 protein. In some cell lysates, this antibody detects a 45 kDa band of unknown origin.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gln147 of human HUS1 protein.

    Background

    DNA damage resulting from genotoxic stress activates cellular checkpoints that prevent or delay cell division until damaged DNA is repaired or the cell follows an apoptotic pathway. The Rad9 homolog A (Rad9A, Rad9) protein is part of a checkpoint protein complex that acts as an early sensor of DNA damage. Together with the HUS1 and Rad1 checkpoint proteins, Rad9 forms a heterotrimeric 9-1-1 complex with a ring structure similar to the processivity factor PCNA. The 9-1-1 complex induces multiple signaling pathways, including the ATM- and ATR-activated DNA repair pathways (1,2). A functional 9-1-1 complex is required for ATR-dependent S phase checkpoint signaling (3).

    The 9-1-1 complex interacts with DNA topoisomerase 2-binding protein 1 (TopBP1) in response to DNA damage, activating ATR and causing signal amplification through further recruitment of TopBP1 (4). The 9-1-1 complex interacts with DNA mismatch repair proteins MSH2, MSH3, and MSH6 to play a role in mismatch repair (5). During an error-free DNA damage tolerance process, the 9-1-1 complex cooperates with polyubiquitinated PCNA and Exo1 nuclease to support switching of the replicative polymerase to the undamaged template (6).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.