Render Target: STATIC
Render Timestamp: 2024-11-22T11:20:27.233Z
Commit: 5c4accf06eb7154018ba3f54329c7590f97f534a
XML generation date: 2024-09-30 01:53:15.726
Product last modified at: 2024-11-12T11:00:10.490Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

ITCH (D8Q6D) Rabbit mAb #12117

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 105
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    ITCH (D8Q6D) Rabbit mAb recognizes endogenous levels of total ITCH protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Asp125 of human ITCH protein.

    Background

    ITCH is a HECT domain-containing E3 ubiquitin ligase, first identified in genetic studies of the mouse agouti locus, in which mutations result in characteristic coat color changes. One particular agouti mutation (non-agouti-lethal 18H) is notable for the development of immunological defects not observed in other agouti mutant mice; these include lymphoid hyperplasia and chronic stomach, lung and skin inflammation (manifest as constant itching). The 18H agouti mutation was traced to a chromosomal inversion that disrupted expression of an adjacent gene in the agouti locus, subsequently termed Itch to reflect the chronic itching phenotype (1-3).
    Further characterizations revealed that Itch encoded a NEDD4-like E3-ubiquitin ligase capable of catalyzing Lys29, Lys48, and/or Lys63-linked ubiquitination of target proteins, leading to their degradation by the proteosome pathway (4-6). The distinct phenotypes of Itch mutant mice led to the identification of an important regulatory role for ITCH-mediated ubiquitination in inflammatory signaling pathways. For example, ITCH-mediated ubiquitination of the transcription factor JunB was shown to play a direct inhibitory role in regulating expression of the proinflammatory cytokine IL-4. ITCH-null T lymphocytes consequently exhibit increased production of IL-4, leading to biased differentiation of naive CD4+ cells towards the proinflammatory Th2 lineage (7). In accordance with the findings from mutant Itch mouse models, a genetic linkage study in humans identified loss-of-function mutations in ITCH as a direct cause of syndromic multisystem autoimmune disease (SMAD) (8).
    Notably, targets of ITCH-mediated ubiquitination are not restricted to immune signaling pathways. For example, key mediators of the Hedgehog (9,10), Wnt/β-catenin (11), Hippo (12), and Notch signaling pathways (13,14) have been identified as important targets of ITCH-mediated ubiquitination (2).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.