Render Target: STATIC
Render Timestamp: 2025-03-20T11:30:52.001Z
Commit: 779953b12a5930618aae6aca7c87fb286faeb1d7
XML generation date: 2025-03-07 13:07:18.464
Product last modified at: 2025-02-19T12:45:39.142Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

KPNA2 Antibody #14372

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 58
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    KPNA2 Antibody recognizes endogenous levels of total KPNA2 protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Glu66 of human KPNA2 protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    Importins belong to the karyopherin family of nuclear transport proteins and are divided into two subgroups: importin alpha and importin beta. Importins function mainly in the import and export of nuclear proteins (1,2). KPNA2 (karyopherin alpha 2), a member of the importin alpha family, contains an N-terminal importin beta binding (IBB) motif followed by a hydrophobic region consisting of 10 armadillo repeats that function in binding to the nuclear localization signal (NLS) sites of cargo proteins (3-5). A trimeric complex (importin beta/KPNA2/cargo protein) forms, translocates into the nucleus, and then dissociates upon binding of RanGTP to importin beta. The dissociated importin alpha is recycled back to the cytoplasm with the help of export factor CAS (6,7). KPNA2 can differentially regulate target localization by binding to different cargo proteins, either actively transporting them to the nucleus (such as oct3/4) or retaining them in the cytoplasm by formation of incompetent complexes (such as oct6/brn2) (8). Research studies indicate that KPNA2 promotes cell proliferation and tumorigenesis. Research studies have also shown that up-regulation of KPNA2 is associated with cancer progression. Therefore, it has become a focus of biomarker research (9-13).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.