Render Target: STATIC
Render Timestamp: 2024-12-20T10:53:00.444Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:53:19.303
Product last modified at: 2024-12-17T18:47:04.031Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

MAG (D10H1) Rabbit mAb #12275

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 100
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Simple Western™ 1:10 - 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    MAG (D10H1) Rabbit mAb recognizes endogenous levels of total MAG protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Pro70 of human MAG protein.

    Background

    Myelin-associated glycoprotein (MAG), which contains five immunoglobulin-like domains, is a highly glycosylated protein (1). MAG is a component of all myelinated internodes, whether formed by oligodendrocytes in the central nervous system (CNS) or by Schwann cells in the peripheral nervous system (PNS) (2), and has several functions. A known function of MAG is its inhibition of axonal regeneration after injury. It inhibits axonal outgrowth from adult dorsal root ganglion and in postnatal cerebellar, retinal, spinal, hippocampal, and superior cervical ganglion neurons (3). Interaction between MAG and several other molecules on the innermost wrap of myelin and complementary receptors on the opposing axon surface are required for long-term axon stability. Without MAG, myelin is still expressed, but long-term axon degeneration and altered axon cytoskeleton structure can be seen (4).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.