Render Target: STATIC
Render Timestamp: 2024-10-11T10:13:42.499Z
Commit: 56767fe525c928647c8401233a175d0d607d385d
XML generation date: 2024-08-01 15:28:19.141
Product last modified at: 2024-05-30T07:01:57.772Z
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

NLRX1 Antibody #8583

We recommend the following alternatives

Filter:
  • WB
  • IP
This product is discontinued

Inquiry Info. # 8583

Please see our recommended alternatives.

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 100
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    NLRX1 Antibody recognizes endogenous levels of total NLRX1 protein. This antibody cross-reacts with a 65 kDa protein of unknown origin.

    Species Reactivity:

    Human

    The antigen sequence used to produce this antibody shares 100% sequence homology with the species listed here, but reactivity has not been tested or confirmed to work by CST. Use of this product with these species is not covered under our Product Performance Guarantee.

    Species predicted to react based on 100% sequence homology:

    Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Lys441 of human NLRX1 protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family of proteins is a diverse family of cytoplasmic innate immune receptors. They are characterized by the presence of an amino-terminal effector domain, which is often either a caspase activation and recruitment domain (CARD) or a pyrin domain (PYD), followed by a NACHT domain and carboxy-terminal leucine-rich-repeats (LRR) involved in recognition of pathogen-associated molecular patterns (PAMPs) (1). NLR proteins play a variety of roles during the innate immune response including pathogen sensing, transcriptional activation of proinflammatory cytokines through NF-κB, transcriptional activation of type I interferons through IRFs, and formation of inflammasomes leading to activation of inflammatory caspases (1-7).
    NLRX1 (CLR11.3/NOD26/NOD5/NOD9) is unique among NLR family members in that it contains an amino-terminal mitochondrial targeting sequence resulting in localization to the mitochondria (8,9). In contrast to most NLR proteins, NLRX1 has been shown to act as a negative regulator of innate immune responses through inhibition of MAVS-Rig-I signaling, as well as inhibition of Toll-like receptor (TLR)-mediated NF-κB activation (9-11). In addition, overexpression of NLRX1 enhanced the production of reactive oxygen species (ROS), resulting in prolonged NF-κB and JNK signaling in response to TNF-α (8).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.