Render Target: STATIC
Render Timestamp: 2024-12-23T10:56:12.407Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-08-01 15:24:08.361
Product last modified at: 2024-12-17T18:15:08.434Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Polyclonal Antibody
PDP - Template ID: *******59c6464

RalBP1 (I33) Antibody #3630

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 95
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    RalBP1 (I33) Antibody detects endogenous levels of total RalBP1 protein.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ile33 of human RalBP1 protein. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    The RalA binding protein 1 (RalBP1 or RLIP76) was originally identified as a GTP-RalA associated protein that acted as a downstream RalA effector in regulating Ral-Ras signaling (1). RalBP1 interacts with RalA and the endocytosis protein REPS2 (POB1) through its carboxy-terminal Ral binding domain. RalBP1 has an intrinsic GTPase activating function and interacts with Cdc42 through its centrally located Rho-GAP domain (1-3). A protein complex containing RalBP1/POB1/RalA regulates endocytosis of membrane receptors (4). RalBP1 also functions as a non-ABC transporter that catalyzes the ATP-dependent transport of numerous xenobiotics, including glutathione conjugates and some chemotherapeutic agents. RalBP1 transporter activity may play an important role in detoxification, drug resistance and the stress response (5-7). Increased expression of RalBP1 protein is associated with some forms of cancer and regression of cancer xenografts results from RalBP1 inhibition (8,9). Evidence to date suggests that RalBP1 may be a promising therapeutic target for cancer therapy.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.