Render Target: STATIC
Render Timestamp: 2024-12-23T11:45:38.705Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:53:11.137
Product last modified at: 2024-12-17T18:46:49.477Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

SENP1 (D16D7) Rabbit mAb #11929

Filter:
  • WB

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 76
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    SENP1 (D16D7) Rabbit mAb recognizes endogenous levels of total SENP1 protein.

    Species Reactivity:

    Human

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gln175 of human SENP1 protein.

    Background

    SENP1 is a member of the sentrin/SUMO-specific protease (SENP) family. SENP1 localizes to the nucleoplasm and catalyzes the release of SUMO1, SUMO2, and SUMO3 monomers from sumoylated substrates (1,2). SENP1 has been reported to be responsible for intracellular SUMO homeostasis in the control of normal cellular function (2). The removal of sumoylation by SENP1 from many important target proteins, such as HDAC1, HIF-1α, Stat5, p300, Elk-1, and SirT1, leads to the regulation of the related biological pathways (3-8). SENP1-induced desumoylation of HIF-1α stabilizes the target during hypoxia (5), activating downstream VEGF expression and angiogenesis (9). SENP1 desumoylates Stat5 and contributes to Stat5 acetylation and subsequent signaling during normal lymphocyte development (6). Under stress conditions, SENP1 interacts with and inactivates SirT1 by desumoylation, protecting cells from apoptosis (8). SENP1 has been reported to target the progesterone and androgen receptors, either directly or indirectly through HDAC1, thereby upregulating their transcriptional function and potentially affecting receptor-related cancer progression (3,10-13).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.