Render Target: STATIC
Render Timestamp: 2024-11-22T11:18:09.653Z
Commit: 5c4accf06eb7154018ba3f54329c7590f97f534a
XML generation date: 2024-09-30 01:55:46.446
Product last modified at: 2024-11-15T14:30:10.180Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

SirT7 (D3K5A) Rabbit mAb #5360

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 45
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    SirT7 (D3K5A) Rabbit mAb recognizes endogenous levels of total SirT7 protein. This antibody does not cross-react with other sirtuin proteins.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a recombinant protein specific to the amino terminus of human SirT7 protein.

    Background

    The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as Class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae Sir2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT7, a mammalian homolog of Sir2, is localized primarily in the nucleolus and is most prominently expressed in hematopoietic cells, especially myeloid progenitor cells (2). SirT7 is recruited to chromatin by sequence-specific DNA binding transcription factors such as Elk-4, where it functions to deacetylate Lys18 of histone H3 at gene promoters and facilitate transcriptional repression (3). Interestingly, overexpression of SirT7 induces a global decrease in histone H3 Lys18 acetylation levels, a phenotype that has been associated with poor prognosis in prostate, lung, kidney, and pancreatic cancers in the research literature (3-5). Furthermore, studies have also shown that SirT7 is required for the maintenance of several transformed phenotypes of cancer cells, including anchorage-independent cell growth, growth in low serum conditions, and tumor formation in xenograft assays (3). SirT7 is also required for the E1A-induced decrease in histone H3 Lys18 acetylation, induction of cell-cycle entry, and escape from contact inhibition (3). Taken together, these findings strongly suggest that SirT7 is an important regulator of cellular transformation. Research has shown that the SirT7 gene is located on chromosome 17q25.3, a region that is frequently altered in acute leukemia and lymphoma (2), and SirT7 overexpression and amplification have been detected in multiple types of cancer (6-8).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.