Render Target: STATIC
Render Timestamp: 2024-12-26T11:56:21.578Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-11-18 16:03:11.202
Product last modified at: 2024-11-19T09:00:10.537Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

TAF-Iβ (F9P9J) Rabbit mAb #16032

Filter:
  • WB
  • IP

    Supporting Data

    REACTIVITY H R Mk
    SENSITIVITY Endogenous
    MW (kDa) 42
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    Species Cross-Reactivity Key:
    • H-Human 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    TAF-Iβ (F9P9J) Rabbit mAb recognizes endogenous levels of total TAF-Iβ protein. This antibody does not cross-react with TAF-Iα protein.

    Species Reactivity:

    Human, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding His17 of human TAF-Iβ protein.

    Background

    Templated activating factor I (TAF-I), also known as SET, is a histone chaperone protein first discovered to play a role in adenovirus chromatin replication (1,2). TAF-I is an acidic protein capable of binding histone cores and remodeling nucleosomes (3). TAF-I is part of the inhibitor of acetyltransferases (INHAT) complex, which sharply represses histone acetylation by PCAF and P300/CBP (4). INHAT complex binding to histone tails is affected by certain histone marks (5). TAF-I has two predominant isoforms, TAF-Iα and TAF-Iβ, which only differ in the N-terminus. TAF-Iα is the predominant isoform in embryonic stem cells, and its expression is regulated by pluripotent factors. Upon differentiation, an isoform shift takes place as the alternative promoter is upregulated, generating TAF-Iβ (6-8). TAF-I uniquely exhibits histone chaperone activity toward linker histone H1, regulating higher-order chromatin structure. TAF-Iα has less activity than TAF-Iβ due to its inhibitory interaction between its unique N-terminus and the C-terminus (9,10). TAF-I has been implicated in oncogenic transformation by inhibiting apoptosis (11).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.