Render Target: STATIC
Render Timestamp: 2024-11-21T12:42:30.637Z
Commit: 5c4accf06eb7154018ba3f54329c7590f97f534a
XML generation date: 2024-11-14 15:31:12.452
Product last modified at: 2024-11-15T08:01:04.582Z
1% for the planet logo
PDP - Template Name: Matched Antibody Pair
PDP - Template ID: *******446e1e7

Total Histone H3 Matched Antibody Pair #78208

Filter:
  • ELISA

    Supporting Data

    REACTIVITY H M Mk
    Application Key:
    • ELISA-ELISA 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Matched Antibody Pairs include capture and detection antibodies to non-overlapping epitopes. Optimal dilutions/concentrations should be determined by the end user.

    Formulation

    Supplied in 1X PBS (10 mM Na2HPO4, 3 mM KCl, 2 mM KH2PO4, and 140 mM NaCl (pH 7.8)). BSA and Azide Free.

    Storage

    Store at -20ºC. This product will freeze at -20ºC so it is recommended to aliquot into single-use vials to avoid multiple freeze/thaw cycles. A slight precipitate may be present and can be dissolved by gently vortexing. This will not interfere with antibody performance.

    Product Description

    The Total Histone H3 Matched Antibody Pair is ideal for use with immunoassay technologies and high-throughput ELISA platforms requiring antibody pairs with specialized or custom antibody labeling. Labels include fluorophores, lanthanides, biotin, and beads. Platforms requiring conjugated Matched Antibody Pairs include MSD, Quanterix Simoa, Alpha Technology (AlphaScreen, AlphaLISA, LANCE, HTRF), and Luminex.

    Learn how Matched Antibody Pairs move your projects forward, faster at cst-science.com/matched-antibody-pairs.

    Background

    Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various posttranslational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.