Render Target: STATIC
Render Timestamp: 2024-12-20T11:26:06.495Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-09-30 01:56:21.900
Product last modified at: 2024-12-17T19:00:02.880Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

Tristetraprolin (D1I3T) Rabbit mAb #71632

Filter:
  • WB

    Supporting Data

    REACTIVITY H M R
    SENSITIVITY Endogenous
    MW (kDa) 40-48
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Tristetraprolin (D1I3T) Rabbit mAb recognizes endogenous levels of total Trisetraprolin protein.

    Species Reactivity:

    Human, Mouse, Rat

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Ala235 of human tristetraprolin protein.

    Background

    Tristetraprolin (TTP), also known as NUP475, G0S24, RNF162A, TIS11, and ZFP36, is a CCCH tandem zinc-finger protein that binds to adenosine and uridine (AU)-rich elements (AREs) within 3'-untranslated regions of mRNA and leads to their rapid degradation (1-6). Expression of TTP is rapidly induced by mitogens and growth factors including insulin, phorbol ester, cytokines, and lipopolysaccharide (LPS). In addition, numerous phosphorylation sites on TTP can regulate its stability, nuclear to cytosolic trafficking, as well as controlling its ARE-binding activity. Many of the target mRNAs for TTP, such as TNF-α, have critical roles in inflammation and cancer (2), and mice deficient in TTP develop a systemic autoimmune inflammatory syndrome along with excessive TNF-α levels (7). Furthermore, suppression of TTP expression has been identified as a negative prognostic indicator for some cancers (8).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    KARPAS cell line source: Dr. Abraham Karpas at the University of Cambridge.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.