Render Target: STATIC
Render Timestamp: 2024-11-22T12:06:52.963Z
Commit: 5c4accf06eb7154018ba3f54329c7590f97f534a
XML generation date: 2024-09-30 01:58:17.967
Product last modified at: 2024-10-21T11:15:52.460Z
1% for the planet logo
PDP - Template Name: Monoclonal Antibody
PDP - Template ID: *******c5e4b77
R Recombinant
Recombinant: Superior lot-to-lot consistency, continuous supply, and animal-free manufacturing.

YTHDF1 (E9P6V) Rabbit mAb #57530

Filter:
  • WB
  • IP
  • IF

    Supporting Data

    REACTIVITY H M R Mk
    SENSITIVITY Endogenous
    MW (kDa) 70
    Source/Isotype Rabbit IgG
    Application Key:
    • WB-Western Blotting 
    • IP-Immunoprecipitation 
    • IF-Immunofluorescence 
    Species Cross-Reactivity Key:
    • H-Human 
    • M-Mouse 
    • R-Rat 
    • Mk-Monkey 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000
    Immunoprecipitation 1:50
    Immunofluorescence (Immunocytochemistry) 1:50 - 1:200

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/mL BSA, 50% glycerol, and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    YTHDF1 (E9P6V) Rabbit mAb recognizes endogenous levels of total YTHDF1 protein. Experiments utilizing overexpression constructs indicated that this antibody does not cross-react with other YTHDF proteins. Clone E9P6V is more sensitive than E8R5L by immunofluorescence.

    Species Reactivity:

    Human, Mouse, Rat, Monkey

    Source / Purification

    Monoclonal antibody is produced by immunizing animals with a synthetic peptide corresponding to residues surrounding Gly90 of human YTHDF1 protein.

    Background

    N6-methyladenosine (m6A) is an abundant RNA modification that plays an important role in mRNA splicing, processing, and stability. The m6A modification is specifically recognized by members of the YT521B homology (YTH) domain-containing family (YTHDF), consisting of YTHDF1, YTHDF2, and YTHDF3. All three members of the YTHDF family are primarily cytosolic proteins that share similar sequence and domain structure, including a conserved C-terminal YTH domain that specifically interacts with m6A (1). Despite these similarities, recent studies suggest that YTHDF proteins are involved in distinct regulatory functions with minimal overlap. Specifically, YTHDF1 binding has been reported to promote enhanced mRNA translation, but has no measurable effect on mRNA stability (2). Conversely, YTHDF2 binding appears to promote mRNA degradation, but has minimal effect on translation efficiency (3). The function of YTHDF3 is less clear, but it has been proposed to function as an auxiliary protein for both YTHDF1 and YTHDF2, helping to promote either increased mRNA translation or decay, respectively (4). Additional studies offer a different viewpoint, suggesting that all three YTHDF proteins initiate mRNA degradation (5), or mediate increased mRNA stability and protein expression (6), promoting the idea that these proteins may carry out similar rather than distinct functions.
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    XP is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.