Render Target: STATIC
Render Timestamp: 2024-12-20T12:06:50.576Z
Commit: f2d32940205a64f990b886d724ccee2c9935daff
XML generation date: 2024-10-04 16:01:08.818
Product last modified at: 2024-12-12T17:00:13.518Z
Cell Signaling Technology Logo
1% for the planet logo
PDP - Template Name: PTMScan (with Pricing)
PDP - Template ID: *******57cbce3

PTMScan® HS Acetyl-Lysine Motif (Ac-K) Kit #46784

Additional Information

This product is intended for peptide enrichment and mass spectrometry analysis. To learn more about our Proteomics Kits and Services please answer a few questions for our Proteomics group.

Contact the CST Proteomics Group

    Product Information

    Storage

    All components in this kit are stable for at least 12 months when stored at the recommended temperature. Upon receipt, 99064S should be stored at 4°C. 25144S and 42424S should be stored at -20°C. Do not aliquot the antibodies.

    Protocol

    Product Description

    PTMScan® HS is an enhanced PTMScan® methodology with improved identification of post-translationally modified peptides. PTMScan® technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. PTMs that can be analyzed by PTMScan® technology include phosphorylation, ubiquitination, acetylation, and methylation, among others. The technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity (HS), providing a global overview of PTMs in cell and tissue samples without bias about where the modified sites occur. For more information on PTMScan® products and services, please visit Proteomics Resource Center.

    Background

    Acetylation of lysine, like phosphorylation of serine, threonine or tyrosine, is an important reversible modification controlling protein activity. The conserved amino-terminal domains of the four core histones (H2A, H2B, H3, and H4) contain lysines that are acetylated by histone acetyltransferases (HATs) and deacetylated by histone deacetylases (HDACs) (1). Signaling resulting in acetylation/deacetylation of histones, transcription factors, and other proteins affects a diverse array of cellular processes including chromatin structure and gene activity, cell growth, differentiation, and apoptosis (2-6). Recent proteomic surveys suggest that acetylation of lysine residues may be a widespread and important form of post-translational protein modification that affects thousands of proteins involved in control of cell cycle and metabolism, longevity, actin polymerization, and nuclear transport (7,8). The regulation of protein acetylation status is impaired in cancer and polyglutamine diseases (9), and HDACs have become promising targets for anti-cancer drugs currently in development (10).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.