Render Target: STATIC
Render Timestamp:
4/4/2025, 11:19:52 AM EDT
4/4/2025, 3:19:52 PM UTC
Commit: c91f970ca8df4f527662a05c7bd6e4d03c6fa173
XML generation date: 2025-03-07 13:17:08.326
Product last modified at: 2025-02-24T21:30:09.874Z
Cell Signaling Technology Logo

Basket Updated

0

Items added

1% for the planet logo
PDP - Template Name: PTMScan (with Pricing)
PDP - Template ID: *******57cbce3

PTMScan® HS Symmetric Di-Methyl Arginine Motif (sdme-RG) Kit #35985

PTMScan® HS Symmetric Di-Methyl Arginine Motif (sdme-RG) Kit: Image 1
Motif analysis using all symmetric di-methyl arginine peptides enriched and identified by PTMScan® HS Symmetric Di-Methyl Arginine Motif (sdme-RG) Kit from two different samples. One milligram each of mouse liver and Hep G2 human hepatoblastoma cells were independently digested with trypsin and immunoprecipitated with PTMScan® HS Symmetric Di-Methyl Arginine (sdme-RG) Magnetic Immunoaffinity Beads. Orbitrap Fusion™ Lumos™ mass spectrometer analysis identified a total of 446 unique sites. The motif logo shows that the sdme-RG antibody is a general motif antibody that recognizes the sdme-RG motif independent of protein context, without other amino acid preferences.

To Purchase # 35985

Cat. # Size Qty. Price
35985S 1 Kit
10 assays
$2,502

Additional Information

This product is intended for peptide enrichment and mass spectrometry analysis. To learn more about our Proteomics Kits and Services please answer a few questions for our Proteomics group.

Contact the CST Proteomics Group

  • Product Includes
  • Related Products
Product IncludesVolume (with Count)
PTMScan® HS Symmetric Di-Methyl Arginine (sdme-RG) Magnetic Immunoaffinity Beads #391831 x 200 µl
PTMScan® IAP Buffer (10X) #999310 x 600 µl

Product Information

Storage

All components in this kit are stable for at least 12 months when stored at the recommended temperature. Upon receipt, 39183S should be stored at 4°C. 9993S should be stored at -20°C. Do not aliquot the antibody.

Protocol

Product Description

PTMScan® HS is an enhanced PTMScan® methodology with improved identification of post-translationally modified peptides. PTMScan® technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography tandem mass spectrometry (LC-MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. PTMs that can be analyzed by PTMScan® technology include phosphorylation, ubiquitination, acetylation, and methylation, among others. The technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity (HS), providing a global overview of PTMs in cell and tissue samples without bias about where the modified sites occur. For more information on PTMScan® products and services, please visit www.cellsignal.com/applications/proteomics.

Background

Arginine methylation is a prevalent PTM found on both nuclear and cytoplasmic proteins. Arginine methylated proteins are involved in many different cellular processes, including transcriptional regulation, signal transduction, RNA metabolism, and DNA damage repair (1-3). Arginine methylation is carried out by the arginine N-methyltransferase (PRMT) family of enzymes that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (4). There are three different types of arginine methylation: asymmetric dimethylarginine (aDMA, omega-NG,NG-dimethylarginine), where two methyl groups are placed on one of the terminal nitrogen atoms of the guanidine group of arginine; symmetric dimethylarginine (sDMA, omega-NG,NG-dimethylarginine), where one methyl group is placed on each of the two terminal guanidine nitrogens of arginine; and monomethylarginine (MMA, omega-NG-methylarginine), where a single methyl group is placed on one of the terminal nitrogen atoms of arginine. Each of these modifications has potentially different functional consequences. Though all PRMT proteins catalyze the formation of MMA, Type I PRMTs (PRMT1, 3, 4, 6, and 8) add an additional methyl group to produce aDMA, while Type II PRMTs (PRMT5 and 7) produce sDMA. Methylated arginine residues often reside in glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (5). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within proline-glycine-methionine rich (PGM) motifs (6).
For Research Use Only. Not For Use In Diagnostic Procedures.
Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
All other trademarks are the property of their respective owners. Visit our Trademark Information page.