Render Target: STATIC
Render Timestamp: 2024-11-14T11:01:51.856Z
Commit: 3c1f305a63297e594ac8d7bb5424007d592d68be
XML generation date: 2024-09-20 06:23:37.721
Product last modified at: 2024-06-27T13:37:07.854Z
1% for the planet logo
PDP - Template Name: PTMScan (with Pricing)
PDP - Template ID: *******57cbce3

PTMScan® Nitro-Tyrosine Motif [Nitro-Y] Kit #44462

Additional Information

This product is intended for peptide enrichment and mass spectrometry analysis. To learn more about our Proteomics Kits and Services please answer a few questions for our Proteomics group.

Contact the CST Proteomics Group

    Product Information

    Storage

    Antibody beads supplied in IAP buffer containing 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Product Description

    PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan™), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1).

    Background

    Nitric oxide (NO) is implicated in carcinogenesis (1), chronic infection, inflammation (2), and neurodegeneration (3). High levels of both superoxide and NO in tissues interact to form peroxynitrite, a potent oxidant that can modify Tyr residues in proteins to form 3-nitro-tyrosine (4). Tyrosine nitration of mitochondrial manganese superoxide dismutase results in loss of enzymatic activity (4). The nitration of p53 at Tyr residues abolishes its capacity for binding to its DNA consensus sequence (5).
    For Research Use Only. Not For Use In Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    AcetylScan is a registered trademark of Cell Signaling Technology, Inc.
    MethylScan is a registered trademark of Cell Signaling Technology, Inc.
    PhosphoScan is a registered trademark of Cell Signaling Technology, Inc.
    UbiScan is a registered trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.